TO A STORE WITH A SECTOR OF THE OF A CALCAL AS INDIPITALISE.

CECS Scheme

USN 17MAT21

Second Semester B.E. Degree Examination, June/July 2018 Engineering Mathematics – II

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. Solve $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 6e^{3x}$. (06 Marks)

b. Solve
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - 4\frac{dy}{dx} - 4y = 3e^x$$
. (07 Marks)

c. Solve by the method of variation of parameter $y'' + y = \frac{1}{1 + \sin x}$. (07 Marks)

OR

2 a. Solve
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 25y = e^{2x} + \sin x + x$$
. (06 Marks)

b. Solve
$$y'' + 4y' + 5y = -2\cosh x$$
; find y when $y = 0$ and $\frac{dy}{dx} = 1$ at $x = 0$.

c. Solve by the method of undetermined coefficient $(D^2 - 3D + 2)y = x^2 + e^{x}$ (07 Marks)

Module-2

3 a. Solve
$$x \frac{d^2y}{dx^2} - \frac{2y}{x} = x + \frac{1}{x^2}$$
 (06 Marks)

b. Solve
$$\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$$
 (07 Marks)

c. Find the general and singular solution for
$$xp^2 + xp - yp + 1 - y = 0$$
. (07 Marks)

OR

4 a. Solve
$$(2x+3)^2y'' - (2x+3)y' - 12y = 6x$$
. (06 Marks)

b. Solve
$$xy\left\{\left(\frac{dy}{dx}\right)^2 + 1\right\} = (x^2 + y^2)\frac{dy}{dx}$$
. (07 Marks)

c. Find the general solution by reducing to Clairaut's form (px-y)(x+py) = 2p using $U = x^2$ and $V = y^2$. (07 Marks)

Module-3

- 5 a. Find the partial differential equation of all spheres $(x-a)^2 + (y-b)^2 + z^2 = c^2$. (06 Marks)
 - b. Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ for which $\frac{\partial z}{\partial y} = -2\sin y$ when x = 0 and z = 0 when y is an odd

multiple of
$$\frac{\pi}{2}$$
. (07 Marks)

c. Derive one dimensional wave equation with usual notations. (07 Marks)

17MAT21

OR

- a. Form the partial differential equation by eliminating the arbitrary function from (06 Marks) $z = y\phi(x) + x\psi(y)$.
 - b. Solve $\frac{\partial^2 z}{\partial y^2} = z$; given that when y = 0, $z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$. (07 Marks)
 - Find the various possible solution for one dimensional heat equation by the method of (07 Marks) separation of variables.

Module-4

Prove that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

(06 Marks)

b. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz \, dz \, dy \, dx$

(07 Marks)

c. Evaluate $\iint xy(x+y)dxdy$ over the area between $y=x^2$ and y=x.

(07 Marks)

- a. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-y}}{y} dy dx$ by changing the order of integration. (06 Marks)
 - Show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$. (07 Marks)
 - Prove that with usual notations $\beta(m,n) = \frac{|m|n}{|m+n|}$ (07 Marks)

Find the Laplace transform of $\frac{\frac{\text{Module-5}}{\cos 2t - \cos 3t}}{t}.$ Express the function in

(06 Marks)

Express the function in terms of unit step function and hence find its Laplace transform

$$f(t) = \begin{cases} \cos t & 0 < t < \pi \\ 1 & \pi < t < 2\pi \\ \sin t & t > 2\pi \end{cases}$$
 (07 Marks)

c. Find $L^{-1}\left\{\frac{s+3}{s^2-4s+13} + \log_e\left(\frac{s+1}{s-1}\right)\right\}$. (07 Marks)

Find the Laplace transform of the periodic function

$$f(t) = \begin{cases} t & 0 < t < \pi \\ \pi - t & \pi < t < 2\pi \end{cases}$$
 of period 2π . (06 Marks)

Using convolution theorem obtain the inverse Laplace transform of $\frac{s}{(s+2)(s^2+9)}$

(07 Marks)

Solve the equation $y'' - 3y' + 2y = e^{3t}$; y(0) = 1 and y'(0) = 0 using Laplace transform technique. (07 Marks